王小川谈AI应用的未来:从省时间到加时间

AI前沿4周前发布 wanglu852
1,677 0 0
广告也精彩

1. 大模型创业的节奏变化

张鹏: 你是不是瘦了?

王小川: 大概有三斤。

张鹏: 那么精准啊。

王小川: 经常有在称体重。

张鹏: 跟你去年的状态变化还很大。去年我的印象是浑身张力拉满,一个月更新一次大模型。今年感觉不太一样,是有什么节奏的变化吗?

王小川: 去年成立了新公司,可以说是一脚地板油,滋滋冒着烟往前冲,28 天发一个模型,速度也很快。我们在 4 月份成立,6 月份发布第一款的 7B、13B 开源模型。8 月份国家发大模型牌照,全国八家备案,包括有字节,百度,商汤…… 创业公司有三家,百川,MiniMax,智谱,其他两家都是 19、21 年成立的,我们是最晚的一家,成立四个月后就拿到国家的注册备案。后来我们跟相关部门聊,才知道备案的 160 个模型里面有一半用的是百川开源模型来搭建。

去年在急速地往前跑,团队在扩张、行业硝烟四起,到今年会发现每家都开始在找自己的定位和节奏,不管从文本的语言模型到视频模型,各家都有更多的思考。虽然每次国外有新发布会,国内还是一阵狂欢,但现在不像去年有那种推背感,当时每天都有看不完的新信息、新论文,现在整个节奏跟去年完全不一样,今天能够很安静的把自己的竞争力在哪、内部如何定义胜利等做一个新的梳理。

张鹏: 所以你给百川设定的节奏,是不是也有了明确变化?去年节奏佷明确,每个月都要在大模型上有进展,简单粗暴一脚地板油。今年的节奏是怎么设定的?

王小川: 今天我认为大概从以一个月为单位来做,变成一个季度。不一样的地方在于,去年大家关注点在模型,今年大家开始看性能和成本,探讨怎么实现应用突破。

去年 4 月份公司成立,我们提到「理想上慢一步,落地上快三步」。当时觉得这么说大家会不会有误解,觉得我们没有理想。我倒觉得并不是这样,做超级模型或超级应用,两个超级今天依然成立,而且大家已经关注什么叫超级模型、超级应用,不只是拼谁能够卷快一点。

今年,我认为应该给大家交付的答卷里是对 AGI 本身更完整的思考,什么是 AGI?到达路径是什么?超级应用应该长什么样子?行业依然在理想主义和现实主义之间两派在争论,是先往 AGI 走,还是先落地做应用?

2. 视频与智能的关系

张鹏: 那我问问你,最近一年从美国、从全球的角度,看到 Sora、GPT-4o 的变化。你曾经表达不跟进 Sora,背后的逻辑是什么?

王小川: 去年,我会认为大家觉得大模型做对的第一个关键词叫「大」,所以已经被验证通的叫 Scaling Law。中间第二个词,大家开始慢慢忽略,叫 Language。Large Language Model,语言在中间扮演了今天通向智能最重要的一个角色。

当时做搜狗的时候,我们就有两个方向,自然交互和知识计算。知识计算就代表一种智能,自然交互是使得人跟它有更好的接触,在自然交互里面会提到像语音、图像、视频。但是知识计算的话,中间核心的智能来自于语言。大家提到说用图像或视频去增加智能,我是坚定地以语言为中轴做智能的。

但是如果做交互系统的话,会有声音和图像在里面。这次创业,我们会选择先把长板拉满,在智能上依然坚持语言为中轴。当大家提到 Sora 时,更多还在强调很炫。我跟比较厉害的学者聊,他也很震惊。但慢慢回过神来,会发现如果我们把智能当成现在重要的一个观点时,还是得围绕语言中轴转,其他模态只是帮助应用落地交付更快。所以对百川而言,如果往 AGI 走,依然是要做智能,背后就是语言,这个立场是没有变过的。

Sora 发布,大家 Happy;GPT-4o 发布,大家惊呼,交互上是很好,后来看 OpenAI 内部分享,提到还是要坚持做 texture intelligence,就是文本智能。

我们今天来看连接主义、符号主义,大家都以符号为中心来讲它的可解释性。今天大模型核心是把符号主义的语言,包括数学符号和代码符号,和 Transformer 做压缩连到一块。所以我的关键点是:不要忘记了智能跟符号主义之间的关系。

3. 医疗与AGI的结合

张鹏: 既然你认为医疗符合你的标准,那今年我们会在医疗领域看到百川智能的产品吗?

王小川: 我们内部已经有了 demo,确实是符合我们自己的一个预期的。

我发现今天出现了一个特别矛盾的声音。比如我们跟外界沟通的时候,我们说要做 AGI,要做医疗。大家就会觉得你只是做个 vertical,没有大的理想。但是如果我们说要造个医生出来,他就会怀疑——能做到吗?好像太难了。

好像今天做 AGI 已经变成了一种叶公好龙的做法,就是提 AGI 的时候都特别厉害,但是当真的碰到具体的比如说医疗问题,大家又都躲着走。一方面讨论 AI 要毁灭人类,一方面又觉得 AI 没法在医疗里面有贡献。这是我觉得非常非共识的一个点。

然后我们做医疗的话,会把它类比成无人驾驶。无人驾驶也是之前大家觉得特别难的一个题目,也有伦理的问题,也有可行性的问题,但是大家对无人驾驶也很看重。

医疗其实是一个比无人驾驶更有价值的事情,因为没有无人驾驶司机也能自己开车,但是人生病了没法自己看病。所以医生的供给要比司机少很多,同时又跟生命健康高度相关,因此它的价值就足够大。

那剩下的情况就是伦理问题和难度的问题,那类比无人驾驶 L0-L5 的级别,医疗里面也可以划这样一个级别。

4. 医疗领域的L0-L5级别定义

张鹏: 自动驾驶里各个级别都是有明确的定义的,那医疗领域里的 L0-L5 是怎么定义的?

王小川: 理论上,如果你是单点的信息,给出单点的决策建议,叫做 L1。

如果你是通过多样的数据收集诊断,又看片子、又看语言文本,还有组合的输入;同时在输出的信息里是既有诊断的又有治疗的组合方案,就可以做到 L2。

我们认为今天医疗行业在 AI 加持之后的话,可以做到 L1-L2 之间,比 L1 好一点,但是离 L2 还有差距。

但是我们判断,以现在大模型的技术加上其它技术的引入,是有机会做到 L3 的,也就是在部分场景、甚至大部分场景里,机器能够自己做出长程的判断和决策。但是在关键的时间点里面,还是需要医生来做最终的决策。

因此,我们认为今天这一代大模型是可以做到 L3 的。在理想之中大家还会提到一个词叫 AGI,但是 AGI 是什么还是未被定义的。那我们认为 AGI 至少得有一个可以评测的定义。之前大家觉得图灵测试无法用语言分辨出人和机器了就可以称为智能,那今天我们对于 AGI 的定义就是如果你能造出一个高水平的医生了,就是达到 AGI 了。

大家可能会觉得医生对于 AGI 来说太垂直了,那我想问大家一个数学问题:自然数和偶数哪个多?

大家的第一想法可能是自然数比偶数多,因为偶数是自然数的子集,每两个自然数就有一个偶数,对吧?但数学上不是这么看的,因为每一个自然数乘以 2 都能得到一个偶数,所以偶数是不会比自然数少的,用双射法就可以证明。

所以今天来讲,约等于医生是 AGI 的一个子集,大模型所有的能力在医生上都用得到,比如说推理能力、减少幻觉的能力、沟通能力、共情能力、多模态的能力、记忆的能力。

这个时候我们认为达到了 L4 的水平。

再往下,其实在创业之前,我一直很好奇生命的数学模型是什么。我们知道物理的数学模型已经被找到了;今天做世界模型的话,解决的是语言的数学模型。再往下的话,我们还会去找生命的数学模型,像 AlphaFold 3、AlphaGo,如果跟大模型结合,也许可以构成一个生命的数学模型。那那个时候就可以做到 L5,也就是完全不需要医生介入,从预防、诊断到干预,完全由机器完成,甚至最后超越医生,我们叫做生命模型。

5. 医疗作为通往AGI的“难而正确的事情”

张鹏: 过去我会觉得,小川对医疗领域有一些执着、充满热情,这可能跟你原来的一些思维惯性相关。但刚才我听到的一点是,你认为医疗是通向 AGI 的那件「难而正确的事情」?

王小川: 对,难而正确,且非共识的事情。

张鹏: OK,这个逻辑让我今天有一些新的认知。但是我还是想追问一句,这个行业里面的主体,或者说偏共识的东西,是做娱乐、效率工具。医疗很容易让大家觉得,怎么拆了一个很窄的垂直领域?这会不会给你带来很大挑战?毕竟有那么多力量要说服,有很多技术要挑战。你为什么没有选娱乐或者是效率工具?

王小川: 娱乐、效率工具本身有它的共识。我们说效率工具是帮你省时间的,娱乐是帮你杀时间的。我觉得人生很矛盾啊,一会要省时间,一会帮你杀时间。

张鹏: 对,人家很自洽嘛,这边省完了那边杀嘛。

王小川: 但我们做医疗健康的话,是能够帮你延长生命时间。而且它是可以平行于省时间、杀时间的,一个独立的赛道。

张鹏: 所以你叫加时间。

王小川: 对,给你加时间。前段时候有个朋友说,在美国获得各种各样的能力、服务,成本都在降低。比如说获得视频,以前看电影很贵,现在变便宜了。

在美国只有两个行业、服务,它的价值是越来越贵的。其中一个就是医疗服务,人的需求是无限多的,自古到今,医疗再多供给,人都有需求。另外一个国内没有,叫做成功学。这两个事情是越来越贵的,因此在所有赛道里面,医疗最后是有无限空间的行业。中国的医疗行业大概是十万亿的级别,在美国更多,是十万亿美金往上级别的行业。

张鹏: 只是它集中度不够,是吗?相对分散,但总量很大。

王小川: 分散是好事嘛,像以前电商都是很分散的,但最后有办法在中间形成更大的一个平台。所以我当时 2021 年把公司卖给腾讯的时候,说要做医疗健康,大家第一个问的是,你是不是要去做 AI 制药?我觉得还是把它看小了。

我从研究生做基因测序开始就知道,医药行业在今天核心「医、药、险」三个环节里面,「药」在中间只是一个认知的环节。因为「药」需要很多临床实践,这个认知的获得并不是只在实验室里面拿小白鼠获得的,医药最大的难点是,必须用人做实验,医生一定要介入这个环节,所以临床才是获得认知和服务的中心舞台。

之前药厂是集中的,但是医生是分散的。今天医生要参与到科研,他们既是临床服务者,也是科研工作者,因此在中国叫「得医生者得天下」,患者也是求医生,药厂也要去找医生,但医生供给的量非常有限。

我们今天做 AGI,核心就是通过知识密度扩大知识的供给。医生的供给不是靠生产关系,像滴滴、美团帮你撮合下就够了的。就像骑手,有些人工作不顺利,一不开心去当骑手了,但没法说一不开心就去当医生。这个供给是 AGI 重要的市场空间。

张鹏: 这个阶段,智能能力如果能改变供给,一定是很让人兴奋的。所以你现在很明确是要在医疗领域里造医生了?

王小川: 对,我们造医生。这个很清楚,是我们重要的一个方向。而且造医生,供给稀缺,需求巨大,有市场空间。以我对技术的判断,我认为近两年先做 L3,通向 L4 是有机会的。

并且今天医疗行业其实有后面的数据飞轮。因为大量的精准医疗,这样一个 know-how 的过程,是需要在有医生在全病程管理中去观察,然后收集数据,做这样一个生命模型。

这样的话,不仅是在造医生,同时是通过造医生之后,在服务的过程中间,去构建生命的数学模型,而不是只构造所谓的世界模型。世界模型是特别虚的一个词,我们知道这个世界是熵增的、走向热寂的。

你构造一个东西最后等价于「不确定的世界」,不如构造对生命的理解模型。因为在这里面,我们从今天 LLM 走向 AGI 到后面的生命模型,我们认为除了应用领域,对于技术发展也要有自己的脉络。

张鹏: 嗯,生命本身是一个熵减的状态。

王小川: 熵减的事情才能建模型,熵增的事情怎么建模呢?

张鹏: 嗯,有道理,我觉得说到这一点,答案已经呼之欲出了。

但我再追问一句,就是如何去定义一个好的 AI 医生和一个不好的 AI 医生?假定都是 L3 级别的医生,因为毕竟 L3 就意味着还是要有人在里边,我们最终的结果可能也不一定能看得出来,这个「人」占比是多少。我记得上次我们在聊的时候,我们都在谈这个时代去把产品做好,很重要的就是如何去定义「训练集」和「测试集」,对吧?那什么是一个好的 AI 医生的「训练集」和「测试集」呢?

王小川: 首先讲,医生是两个维度,一个是他的专业性,一个是他跟你沟通中间的耐心和共情。耐心共情对于患者是容易去感触的,所以今天在线的这些平台,都特别强调共情、耐心、提供快速的服务,这个不难定义。难点是它的专业性,专业性其实患者是没法看的。

所以第一个,它的训练集。我们知道所有的医生都需要写论文,就是把他的认知,变成循证级别,从 case report 到后面的 RCT,临床双方实验,到最后的 Meta 分析,荟萃分析。这个过程,就已经把它变成了医疗行业认可的一个数据集,这是广泛存在的,从病例到论文到医学书籍,甚至互联网上已经有的 case,这个训练集是足够的。

而测试集的话,既可以拿今天的这些论文或者医案作标准去测试。甚至往下在临床实验当中,看它究竟对你的治疗效果是否有提升,这是符合医学范式的。医学有它的一套医学统计和临床实验方法,来保证它的严肃性。因此我们要遵循医学的统计规律来验证这个系统。所以一边从消费者出发,一方面符合医学的整个研究范式。

张鹏: 我们能期待在今年看到这种 L3 级别的医生出现吗?

王小川: 我觉得按照我们现在的进度是有机会做到的。

其实去年我们下场的时候就提到医疗、医生。然后在百川的时候,我还讲过创造健康和快乐。

我们的理念,随着我们 deliver 产品之后,大家都能看到了,AGI 等于医生,但今天的大模型还只能做到医生或患者的医疗顾问,给大家交付这样一个路径。之后当你造出医生、有 AGI 之后,其实我们可以做所有的事情,这样能找到一个 TPF 的单点突破。

张鹏: 我觉得你今天最大的、吸引我的一点就是我们终于发现,有人在帮我们省时间,有人帮我们杀时间,只有你可能在努力给我们加时间。

希望你把「加时间」做好,我们都会给你充值。


我认为: 王小川的观点深刻地揭示了AI技术在医疗领域的巨大潜力和挑战。他不仅看到了AI在提高医疗效率和质量方面的可能性,还提出了通过构建生命的数学模型来实现AGI的远大目标。这种前瞻性的思考和实践,对于推动AI技术在医疗健康领域的应用具有重要的指导意义。同时,王小川对于AI医生的定义和评价标准的探讨,也为未来AI在医疗领域的应用提供了科学的方法论。这种深入到行业核心问题的研究,是推动技术进步的必要条件,也是实现技术与社会需求有效对接的关键。

© 版权声明
chatgpt4.0

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...
error: Content is protected !!